
CODE - P

PHYSICS

AIPMT / NEET-2016 TEST PAPER WITH ANSWER & SOLUTIONS (HELD ON SUNDAY 1st MAY, 2016)

4. A siren emitting a sound of frequency 800 Hz moves away from an observer towards a cliff at a speed of 15ms⁻¹. Then, the frequency of sound that the observer hears in the echo reflected from the cliff is :

(Take velocity of sound in air = 330 ms^{-1}) (1) 765 Hz (2) 800 Hz (3) 838 Hz (4) 885 Hz

Observer Source 15 m/s

 $n' = \frac{v}{v - v_0} n_0$

Ans. 3

Sol.

6. In a diffraction pattern due to a single slit of width 'a', the first minimum is observed at an angle 30° when light of wavelength 5000 Å is incident on the slit. The first secondary maximum is observed at an angle of :

(1)
$$\sin^{-1}\left(\frac{1}{4}\right)$$
 (2) $\sin^{-1}\left(\frac{2}{3}\right)$
(3) $\sin^{-1}\left(\frac{1}{2}\right)$ (4) $\sin^{-1}\left(\frac{3}{4}\right)$

Ans. 4

Sol. For first minima,
$$\sin 30^\circ = \frac{\lambda}{a} = \frac{1}{2}$$

5.

 $\frac{330\times800}{315}$ $n' = \frac{330}{330 - 15} (800) =$ $\sin\theta = \frac{3\lambda}{2a} = \frac{3}{2} \left(\frac{1}{2}\right) \Rightarrow \theta = \sin^{-1}\left(\frac{3}{\lambda}\right)$ At what height from the surface of earth the 7. gravitation potential and the value of g are -5.4×10^7 J kg⁻² and 6.0 ms⁻² respectively ? Take the radius of earth as 6400 km : (1) 2600 km (2) 1600 km (3) 1400 km (4) 2000 km A capacitor of 2µF is charged as shown in the Ans. 1 diagram. When the switch S is turned to position $\frac{-GM}{R+h} = -5.4 \times 10^7$ Sol. V 2, the percentage of its stored energy dissipated is: (1) (2) 20% (1) 0% and $g = \frac{GM}{(R+h)^2} = 6$ (4) 80% (3) 75% (2) Ans. 4 dividing (1) and (2)**Sol.** Initial energy stored in capacitor $2 \mu F$ $\Rightarrow \frac{5.4 \times 10^7}{(R+h)} = 6$

8.

Ans. 4

= 838 Hz

 $U_i = \frac{1}{2}2(V)^2 = V^2$

Final voltage after switch 2 is ON

$$V_{f} = \frac{C_{1}V_{1}}{C_{1} + C_{2}} = \frac{2V}{10} = 0.2 V$$

Final energy in both the capacitors

$$U_{f} = \frac{1}{2}(C_{1} + C_{2})V_{f}^{2} = \frac{1}{2}10\left(\frac{2V}{10}\right)^{2} = 0.2 V^{2}$$

So energy dissipated = $\frac{V^2 - 0.2V^2}{V^2} \times 100 = 80\%$

Sol. To generate electormagnetic waves we need accelerating charge particle.

 \Rightarrow R + h = 9000 km so h = 2600 km

(1) A charge moving at constant velocity

(2) A stationary charge (3) A chargeless particle (4) An accelerating charge

Out of the following options which one can be used to produce a propagating electromagnetic wave ? 9. Two identical charged spheres suspended from a common point by two massless strings of lengths *I*, are initially at a distance d (d << *I*) apart because of their mutual repulsion. The charges begin to leak from both the spheres at a constant rate. As a result, the spheres approach each other with a velocity v. Then v varies as a function of the distance x between the spheres, as :

 $v \propto x^{-1}$

(1)
$$v \propto x^{\overline{2}}$$
 (2) $v \propto x$
(3) $v \propto x^{-\frac{1}{2}}$ (4) $v \propto x$

Sol. $\tan \theta = \frac{F_e}{m\sigma} \simeq \theta$ $\frac{Kq^2}{x^2mq} = \frac{x}{2\ell}$

or
$$\boxed{x^3 \propto q^2}$$
 (1)
or $x^{3/2} \propto q$ (2)
differentiate eq.(i) w.r.t. time

 $3x^2 \frac{dx}{dt} \propto 2q \frac{dq}{dt}$ but $\frac{dq}{dt}$ is constant so $x^2(v) \propto q$ replace q from eq. (2) $x^2(v) \propto x^{3/2}$ or $v \propto x^{-1/2}$

10. A uniform rope of length L and mass m_1 hangs vertically from a rigid support. A block of mass m_2 is attached to the free end of the rope. A transverse pulse of wavelength λ_1 is produced at the lower end of the rope. The wavelength of the pulse when it reaches the top of the rope is λ_2 . The ratio λ_2/λ_1 is :

(1)
$$\sqrt{\frac{m_1}{m_2}}$$
 (2) $\sqrt{\frac{m_1 + m_2}{m_2}}$
(3) $\sqrt{\frac{m_2}{m_1}}$ (4) $\sqrt{\frac{m_1 + m_2}{m_1}}$

Ans. 2

Sol. $T_1 = m_2 g$ $T_2 = (m_1 + m_2)g$

Velocity
$$\propto \sqrt{T}$$

 $\lambda \propto \sqrt{T}$

$$\frac{\lambda_1}{\lambda_2} = \frac{\sqrt{T_1}}{\sqrt{T_2}}$$

$$\implies \frac{\lambda_2}{\lambda_1} = \sqrt{\frac{m_1 + m_2}{m_2}}$$

A refrigerator works between 4°C and 30°C. It is 11. required to remove 600 calories of heat every second in order to keep the temperature of the refrigerated space constant. The power required is:

(Take 1 cal = 4.2 Joules)

(1) 2.365 W	(2) 23.65 W
(3) 236.5 W	(4) 2365 W

Ans. 3

Sol. $\beta = \frac{Q_2}{W} = \frac{T_2}{T_1 - T_2}$ (Where Q_2 is heat removed)

Power

$$\frac{600 \times 4.2}{W} = \frac{277}{303 - 277}$$

W = 236.5 joule

 $\frac{W}{t} = \frac{236.5 \text{ joule}}{1 \text{ sec}} = 236.5 \text{ watt.}$

12/ An air column, closed at one end and open at the other, resonates with a tuning fork when the smallest length of the column is 50 cm. The next larger length of the column resonating with the same tuning fork is :

(2) 100 cm (4) 200 cm

Sol. First minimum resonating length for closed organ

pipe =
$$\frac{\lambda}{4}$$
=50 cm

(3) 150 cr

Ans. 3

- \therefore Next larger length of air column = $\frac{3\lambda}{4} = 150$ cm
- 13. Consider the junction diode as ideal. The value of current flowing through AB is :

$$\begin{array}{c|ccccc}
A & 1k\Omega & B \\
+4V & -6V \\
\hline
(1) 0 A & (2) 10^{-2} A \\
\hline
(3) 10^{-1} A & (4) 10^{-3} A \\
\end{array}$$

Ans. 2

Sol. Since diode is in forward bias

$$i = \frac{\Delta V}{R} = \frac{4 - (-6)}{1 \times 10^3} = \frac{10}{10^3} = 10^{-2} A$$

14. The charge flowing through a resistance R varies with time t as $Q = at - bt^2$, where a and b are positive constants. The total heat produced in R is:

(1)
$$\frac{a^{3}R}{6b}$$
 (2) $\frac{a^{3}R}{3b}$
(3) $\frac{a^{3}R}{2b}$ (4) $\frac{a^{3}R}{b}$

Ans. 1

Sol. $Q = at - bt^2$

$$i = a - 2bt$$
 { for $i = 0 \implies t = \frac{a}{2b}$

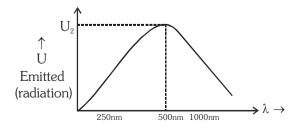
2

From joule's law of heating $dH = i^2 R dt$

$$H = \int_{0}^{a/2b} (a - 2bt)^2 Rdt$$

$$H = \frac{(a - 2bt)^{3}R}{-3 \times 2b} \bigg|_{0}^{\overline{2b}} = \frac{a}{6}$$

15. A black body is at a temperature of 5760 K. The energy of radiation emitted by the body at wavelength 250 nm is U_1 , at wavelength 500 nm is U_2 and that at 1000 nm is U_3 . Wien's constant, $b = 2.88 \times 10^6$ nmK. Which of the following is correct?


(1)
$$U_1 = 0$$

(3)
$$U_1 > U_2$$

Ans. 4

Sol. Maximum amount of emitted radiation corresponding to $\lambda_m = \frac{b}{T}$

$$\lambda_m = \frac{2.88 \times 10^6 \text{ nmK}}{5760 \text{ K}} = 500 \text{ nm}$$

From the graph $U_1 < U_2 > U_3$

16. Coefficient of linear expansion of brass and steel rods are α_1 and α_2 . Lengths of brass and steel rods are ℓ_1 and ℓ_2 respectively. If $(\ell_2 - \ell_1)$ is maintained same at all temperatures, which one of the following relations holds good ?

(1)
$$\alpha_1 \ell_2 = \alpha_2 \ell_1$$

(2) $\alpha_1 \ell_2^2 = \alpha_2 \ell_1^2$
(3) $\alpha_1^2 \ell_2 = \alpha_2^2 \ell_1$
(4) $\alpha_1 \ell_1 = \alpha_2 \ell_2$

Ans. 4

 $\textbf{Sol.} \quad \text{Change in length for both rods should be same}$

$$\Delta \ell_1 = \Delta \ell_2$$

$$\ell_1 \alpha_1 \Delta T = \ell_2 \alpha_2 \Delta T$$

 $\ell_1 \alpha_1 = \ell_2 \alpha_2$ **17.** A npn transistor is connected in common emitter configuration in a given amplifier. A load resistance of 800 Ω is connected in the collector circuit and the voltage drop across it is 0.8 V. If the current amplification factor is 0.96 and the input resistance of the circuit is 192 Ω , the voltage gain and the power gain of the amplifier will respectively be :

Ans. 1 Sol. Given $\alpha =$

SO.

$$\beta = \frac{\alpha}{1-\alpha} = \frac{0.96}{0.04} \Rightarrow \boxed{\beta = 24}$$

Voltage gain for common emitter configuration

$$A_v = \beta. \frac{R_L}{R_i} = 24 \times \frac{800}{192} = 100$$

Power gain for common emitter configuration

 $P_v = \beta A_v = 24 \times 100 = 2400$

Voltage gain for common base configuration

$$A_v = \alpha \cdot \frac{R_L}{R_p} = 0.96 \times \frac{800}{192} = 4$$

Power gain for common base configuration

$$P_v = A_v \alpha = 4 \times 0.96 = 3.84$$

*In the question it is asked about common emitter configuration but we got above answer for common base configuration. **18.** The intensity at the maximum in a Young's double slit experiment is I_0 . Distance between two slits is $d = 5\lambda$, where λ is the wavelength of light used in the experiment. What will be the intensity in front of one of the slits on the screen placed at a distance D = 10 d?

(3) $\frac{3}{4}I_0$

(4) $\frac{l_0}{2}$

Ρ

R

(1) I₀ (2)
$$\frac{I_0}{4}$$

Ans. 4
Sol. Path difference
 $= S_2P - S_1P$
 $= \sqrt{D^2 + d^2} - D$
 $= D\left(1 + \frac{1}{2}\frac{d^2}{D^2}\right) - D$
 $= D\left[1 + \frac{d^2}{2D^2} - 1\right] = \frac{d^2}{2D}$
 $Ax = \frac{d^2}{D^2} = \frac{d}{D} = \frac{5\lambda}{D^2}$

$$\Delta x = \frac{1}{2 \times 10d} - \frac{1}{20} + \frac{1}{20}$$
$$\Delta \phi = \frac{2\pi}{\lambda} \cdot \frac{\lambda}{4} = \frac{\pi}{2}$$

So, intensity at the desired point is

$$I = I_0 \cos^2 \frac{\phi}{2} = I_0 \cos^2 \frac{\pi}{4} =$$

19. A uniform circular disc of radius 50 cm at rest is free to turn about an axis which is perpendicular to its plane and passes through its centre. It is subjected to a torque which produces a constant angular acceleration of 2.0 rad s⁻². Its net acceleration in ms⁻² at the end of 2.0 s is approximately : (1) 8.0 (2) 7.0 (3) 6.0 (4) 3.0

Ans. 1

Sol. Particle at periphery will have both radial and tangential acceleration

$$a_t = R\alpha = 0.5 \times 2 = 1 \text{ m/s}^2$$

$$\omega = \omega_0 + \alpha t$$

$$\omega = 0 + 2 \times 2 = 4 \text{ rad/sec}$$

 $a_c = \omega^2 R = (4)^2 \times 0.5 = 16 \times 0.5 = 8 m/s^2$

$$a_{total} = \sqrt{a_{p}^{2} + a_{c}^{2}} = \sqrt{1^{2} + 8^{2}} \approx 8 \, \text{m/s}^{2}$$

*In this question we have assumed the point to be located at periphery of the disc. **20.** An electron of mass m and a photon have same energy E. The ratio of de-Broglie wavelengths associated with them is :

(1)
$$\frac{1}{c} \left(\frac{E}{2m}\right)^{\frac{1}{2}}$$
 (2) $\left(\frac{E}{2m}\right)^{\frac{1}{2}}$

(3) $c(2mE)^{\frac{1}{2}}$

(4) $\frac{1}{xc}\left(\frac{2m}{E}\right)^{\frac{1}{2}}$

(c being velocity of light)

Ans. 1

Sol. For electron
$$\lambda_e = \frac{n}{\sqrt{2mF}}$$

for Photon E = pc
$$\Rightarrow \lambda_{Ph} = \frac{hc}{E}$$

 $\lambda = h - E (E)^{1/2} 1$

 $\Rightarrow \frac{\lambda_e}{\lambda_{\rm Ph}} = \frac{n}{\sqrt{2mE}} \times \frac{E}{hc} = \left(\frac{E}{2m}\right) = \frac{1}{c}$ A disk and a sphere of same radius bu

21. A disk and a sphere of same radius but different masses roll off on two inclined planes of the same altitude and length. Which one of the two objects gets to the bottom of the plane first ?

(2) Sphere(3) Both reach at the same time(4) Depends on their massesAns. 2

Sol.
$$a = \frac{g \sin \theta}{1 + \frac{K^2}{R^2}}$$

(1) Disk

for disc ;
$$\frac{K^2}{R^2} = \frac{1}{2} = 0.5$$

for sphere ;
$$\frac{K^2}{R^2} = \frac{2}{5} = 0.4$$

a(sphere) > a(disc) ∴ sphere reaches first **22.** The angle of incidence for a ray of light at a refracting surface of a prism is 45°. The angle of prism is 60°. If the ray suffers minimum deviation through the prism, the angle of minimum deviation and refractive index of the material of the prism respectively, are :

(1) 45°,
$$\frac{1}{\sqrt{2}}$$
 (2) 30°, $\sqrt{2}$

(3) 45°,
$$\sqrt{2}$$
 (4) 30°, $\frac{1}{\sqrt{2}}$

Ans. 2

Sol. $i = 45^{\circ}$; $A = 60^{\circ}$; $\delta_m = 2i - A = 30^{\circ}$

$$\mu = \frac{\sin\left(\frac{A+\delta_{m}}{2}\right)}{\sin A/2} = \frac{\sin 45}{\sin 30}$$

23. When an α-particle of mass 'm' moving with velocity 'v' bombards on a heavy nucleus of charge 'Ze', its distance of closest approach from the nucleus depends on m as :

(1)
$$\frac{1}{m}$$
 (2) $\frac{1}{\sqrt{m}}$ (3) $\frac{1}{m^2}$ (4) m

Ans. 1

Sol. At closest distance of approach, the kinetic energy of the particle will convert completely into electrostatic potential energy.

m

$$\Rightarrow \frac{1}{2}mv^2 = \frac{KQq}{d} \Rightarrow d \propto$$

24. A particle of mass 10 g moves along a circle of radius 6.4 cm with a constant tangential acceleration. What is the magnitude of this acceleration if the kinetic energy of the particle becomes equal to 8×10^{-4} J by the end of the second revolution after the beginning of the motion?

(1)
$$0.1 \text{ m/s}^2$$
 (2) 0.15 m/s^2
(3) 0.18 m/s^2 (4) 0.2 m/s^2

Ans. 1

Sol.
$$\frac{1}{2}$$
 mv² = E $\Rightarrow \frac{1}{2} \left(\frac{10}{1000} \right)$ v² = 8 × 10⁻⁴
 \Rightarrow v² = 16 × 10⁻² \Rightarrow v = 4 × 10⁻¹ = 0.4 m/s
Now,

$$v^{2} = u^{2} + 2a_{t}s \qquad (s = 4\pi R)$$

$$\Rightarrow \frac{16}{100} = 0^{2} + 2a_{t} \left(4 \times \frac{22}{7} \times \frac{6.4}{100} \right)$$

$$\Rightarrow a_{t} = \frac{16}{100} \times \frac{7 \times 100}{8 \times 22 \times 6.4} = 0.1 \text{ m/s}^{2}$$

25. The molecules of a given mass of a gas have r.m.s. velocity of 200 ms⁻¹ at 27°C and 1.0×10^5 Nm⁻² pressure. When the temperature and pressure of the gas are respectively, 127°C and 0.05×10^5 Nm⁻², the r.m.s. velocity of its molecules in ms⁻¹ is :

(1)
$$100\sqrt{2}$$
 (2) $\frac{400}{\sqrt{3}}$ (3) $\frac{100\sqrt{2}}{3}$ (4) $\frac{100}{3}$

$$v \propto \sqrt{T} \Rightarrow \frac{v}{200} = \sqrt{\frac{400}{300}} \Rightarrow v = \frac{200 \times 2}{\sqrt{3}} m/s$$

$$v = \frac{400}{\sqrt{3}} m/$$

26. A long straight wire of radius a carries a steady current I. The current is uniformly distributed over its cross-section. The ratio of the magnetic fields B and B', at radial distances $\frac{a}{2}$ and 2a respectively, from the axis of the wire is :

(2)
$$\frac{1}{2}$$

(4) 4

Ans. 3

Ans. 2

Sol.

Sol. For points inside the wire

$$\mathsf{B} = \frac{\mu_0 \mathsf{Ir}}{2\pi \mathsf{R}^2} \quad (\mathsf{r} \le \mathsf{R})$$

For points outside the wire

$$\mathsf{B} = \frac{\mu_0 \mathsf{I}}{2\pi \mathsf{r}} \quad (\mathsf{r} \ge \mathsf{R})$$

according to the question

$$\frac{B}{B'} = \frac{\frac{\mu_0 I(a/2)}{2\pi a^2}}{\frac{\mu_0 I}{2\pi (2a)}} = 1 : 1$$

- **27.** A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \hat{x} + \sin \omega t \hat{y}$. Where ω is a constant. Which of the following is true ?
 - (1) Velocity and acceleration both are perpendicular to $\vec{\ r}$.
 - (2) Velocity and acceleration both are parallel to $\ \vec{r}$
 - (3) Velocity is perpendicular to \vec{r} and acceleration is directed towards the origin
 - (4) Velocity is perpendicular to \vec{r} and acceleration is directed away from the origin

Ans. 3

- **Sol.** $\vec{r} = \cos \omega t \ \hat{x} + \sin \omega t \ \hat{y}$
 - $\vec{v} = -\omega \sin \omega t \ \hat{x} + \omega \cos \omega t \ \hat{y}$
 - $\vec{a} = -\omega^2 \cos \omega t \ \hat{x} + \omega \sin \omega t \ \hat{y} = -\omega^2 \vec{r}$
 - $\vec{r}.\vec{v} = 0$ hence $\vec{r} \perp \vec{v}$
 - \vec{a} is directed towards the origin.
- **28.** What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop ?
 - (1) \sqrt{gR}

$$(3) \sqrt{3\sigma R}$$

(2)
$$\sqrt{2g}$$

 $\sqrt{5}$ gR

Ans. 4

- Sol. When minimum speed of body is $\sqrt{5gR}$, then no matter from where it enters the loop, it will complete full vertical loop.
- **29.** When a metallic surface is illuminated with radiation of wavelength λ , the stopping potential is V. If the same surface is illuminated with radiation of

wavelength 2λ , the stopping potential is $\frac{v}{4}$. The threshold wavelength for the metallic surface is :

(3) $\frac{5}{2}\lambda$

(4) 3λ

Ans. 4

Sol. $eV = \frac{hc}{\lambda} - \frac{hc}{\lambda_0}$...(i)

$$eV/4 = \frac{hc}{2\lambda} - \frac{hc}{\lambda_0}$$
 ...(ii)

(2) 5λ

From equation (i) and (ii)

$$\Rightarrow 4 = \frac{\frac{1}{\lambda} - \frac{1}{\lambda_0}}{\frac{1}{2\lambda} - \frac{1}{\lambda_0}} \quad \text{On solving } \lambda_0 = 3\lambda$$

- **30.** A gas is compressed isothermally to half its initial volume. The same gas is compressed separately through an adiabatic process until its volume is again reduced to half. Then :-
 - (1) Compressing the gas isothermally will require more work to be done.
 - (2) Compressing the gas through adiabatic process will require more work to be done.
 - (3) Compressing the gas isothermally or adiabatically will require the same amount of work.
 - (4) Which of the case (whether compression through isothermal or through adiabatic process) requires more work will depend upon the atomicity of the gas.

 $^{1956}W_{ext}$ = negative of area with volume-axis

W(adiabatic) > W(isothermal)

diabat

sotherma

31. A potentiometer wire is 100 cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite direction. The balance points are obtained at 50 cm and 10 cm from the positive end of the wire in the two cases. The ratio of emf's is :-

(1)
$$5:1$$
 (2) $5:4$
(3) $3:4$ (4) $3:2$

Ans. 4

Ans 2

Sol.

Sol.
$$\frac{E_1 + E_2}{E_1 - E_2} = \frac{50}{10}$$

 $\Rightarrow \frac{2E_1}{2E_2} = \frac{50 + 10}{50 - 10} \Rightarrow \frac{E_1}{E_2} = \frac{3}{2}$

7

32. A astronomical telescope has objective and eyepiece of focal lengths 40 cm and 4 cm respectively. To view an object 200 cm away from the objective, the lenses must be separated by a distance :-

(1) 37.3 cm	(2) 46.0 cm
(3) 50.0 cm	(4) 54.0 cm

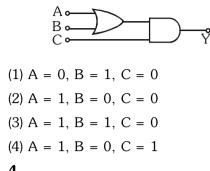
Ans. 4

Sol. Using lens formula for objective lens

$$\frac{1}{v_0} - \frac{1}{u_0} = \frac{1}{f_0} \implies \frac{1}{v_0} = \frac{1}{f_0} + \frac{1}{v_0} = \frac{1}{v_0} = \frac{1}{v_0} + \frac{1}{v_0} = \frac{1}{v_0} = \frac{1}{v_0} + \frac{1}{v_0} = \frac{1}$$

$$\Rightarrow \frac{1}{v_0} = \frac{1}{40} + \frac{1}{-200} = \frac{+5-1}{200}$$

 \Rightarrow v₀ = 50 cm


Tube length $\ell = |v_0| + f_e = 50 + 4 = 54$ cm. **33.** Two non-mixing liquids of densities ρ and $n\rho$ (n > 1) are put in a container. The height of each liquid is h. A solid cylinder of length L and density d is put in this container. The cylinder floats with its axis vertical and length pL(p < 1) in the denser liquid. The density d is equal to :-(1) {1 + (n + 1)p} ρ (2) {2 + (n + 1)p} ρ (3) {2 + (n - 1)p} ρ (4) {1 + (n - 1)p} ρ

Ans. 4

Sol.
$$\begin{array}{c} \rho \\ n\rho \end{array} \begin{array}{c} d \\ (1-p)L \\ pL \end{array}$$

 $L A d g = (pL) A (n\rho)g + (1 - p) L A \rho g$ $\Rightarrow d = (1 - p)\rho + pn \rho = [1 + (n - 1)p]\rho$

34. To get output 1 for the following circuit, the correct choice for the input is

Ans. 4 Sol. $(A + B) C = 1 \Rightarrow C = 1$

- **35.** A piece of ice falls from a height h so that it melts completely. Only one-quarter of the heat produced is absorbed by the ice and all energy of ice gets converted into heat during its fall. The value of h is :
 - [Latent heat of ice is 3.4×10^5 J/kg and g = 10 N/kg]

(1) 34 km (2) 544 km (3) 136 km (4) 68 km

Sol.
$$\frac{\text{High}}{4} = \text{mL}$$

$$\Rightarrow h = \frac{41}{9} = \frac{4 \times 3.4 \times 10^5}{10} = 136$$

36. The ratio of escape velocity at earth (v_e) to the escape velocity at a planet (v_p) whose radius and mean density are twice as that of earth is :-

km.

- (1) 1:2 (2) $1:2\sqrt{2}$
- (3) 1:4 (4) $1:\sqrt{2}$

Ans. 2

Ans. 3

mgł

Sol. Ve =
$$\sqrt{\frac{2GM}{R}} = \sqrt{\frac{2G}{R} \cdot \left(\frac{4}{3}\pi R^3\rho\right)} \propto R\sqrt{\rho}$$

$$\therefore$$
 Ratio = 1 : $2\sqrt{2}$

the magnitude of difference of the two vectors, the 40Ω are connected in series across a source of emf angle between these vectors is :- $V = 10 \sin 340 t$. The power loss in A.C. circuit is :-(1) 0° $(2) 90^{\circ}$ (1) 0.51 W (2) 0.67 W (3) 45° (4) 180° (3) 0.76 W (4) 0.89 W Ans. 2 Ans. 1 $\left|\vec{A} + \vec{B}\right| = \left|\vec{A} - \vec{B}\right| = \theta = 90^{\circ}.$ Sol. **Sol.** $X_{C} = \frac{1}{\alpha C} = \frac{1}{340 \times 50 \times 10^{-6}} = 58.8 \ \Omega$ Given the value of Rydberg constant is $10^7 m^{-1}$, the **38**. $X_{I} = \omega L = 340 \times 20 \times 10^{-3} = 6.8 \ \Omega$ wave number of the last line of the Balmer series in hydrogen spectrum will be :- $Z = \sqrt{R^2 + (X_c - X_1)^2}$ (2) $0.5 \times 10^7 \text{ m}^{-1}$ (1) $0.025 \times 10^4 \text{ m}^{-1}$ (3) $0.25 \times 10^7 \text{ m}^{-1}$ (4) $2.5 \times 10^7 \text{ m}^{-1}$ $= \sqrt{40^2 + (58.8 - 6.8)^2} = \sqrt{4304} \Omega$ Ans. 3 **Sol.** $\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right) = 10^7 \times 1^2 \left(\frac{1}{2^2} \right)$ $= i_{ms}^2 R =$ \Rightarrow wave number = $\frac{1}{2} = 0.25 \times 10^7 \text{ m}^{-1}$ $=\left(\frac{10/\sqrt{2}}{\sqrt{4304}}\right)^2 \times 40 = \frac{50 \times 40}{4304} = 0.47 \text{ W}$ A body of mass 1 kg begins to move under the 39. action of a time dependent force $\vec{F} = (2t\hat{i} + 3t^2\hat{j})N$, So best answer (nearest answer) will be (1) If the velocity of a particle is $v = At + Bt^2$, where 41. where \hat{j} and \hat{j} are unit vectors along x and y axis. A and B are constants, then the distance travelled What power will be developed by the force at the by it between 1s and 2s is :time t ? (2) $(2t^2 + 4t^4)W$ (4) $(2t^3 + 3t^5)W$ (1) $(2t^2 + 3t^3)W$ (2) 3A+7B (3) $(2t^3 + 3t^4)W$ Ans. 4 (4) $\frac{A}{2} + \frac{B}{2}$ (3) $\frac{3}{2}A + \frac{7}{2}B$ **Sol.** $\vec{F} = 2t\hat{i} + 3t^2\hat{i}$ Ans. 3 $m\frac{d\vec{v}}{dt} = 2t\hat{i} + 3t^2\hat{j}$ (m = 1 kg)**Sol.** $V = At + Bt^2 \Rightarrow \frac{dx}{dt} = At + Bt^2$ $\Rightarrow \int_{\alpha}^{v} d\vec{v} = \int_{\alpha}^{t} (2t\hat{i} + 3t^{2}\hat{j})dt \Rightarrow \vec{v} = t^{2}\hat{i} + t^{3}\hat{j}$ $\Rightarrow \int_{a}^{x} dx = \int_{a}^{2} (At + Bt^{2}) dt$ Power = $\vec{F}.\vec{v}$ = (2t³ + 3t⁵)W $\Rightarrow x = \frac{A}{2}(2^2 - 1^2) + \frac{B}{3}(2^3 - 1^3) = \frac{3A}{2} + \frac{7B}{3}$

40.

An inductor 20 mH, a capacitor 50 µF and a resistor

If the magnitude of sum of two vectors is equal to

37.

42. A long solenoid has 1000 turns. When a current of 4A flows through it, the magnetic flux linked with each turn of the solenoid is 4×10^{-3} Wb. The self inductance of the solenoid is :-

(1) 4H (2) 3H (3) 2H (4) 1H

Ans. 4

- **Sol.** Flux linked with each turn = 4×10^{-3} Wb
 - \therefore Total flux linked = 1000[4 × 10⁻³] Wb

 $\phi_{total} = 4 \implies L \ i = 4 \implies L = 1H$

- **43.** A small signal voltage $V(t) = V_0 \sin \omega t$ is applied across an ideal capacitor C :-
 - (1) Current I (t), lags voltage V(t) by 90°.
 - (2) Over a full cycle the capacitor C does not consume any energy from the voltage source.
 - (3) Current I(t) is in phase with voltage V(t).
 - (4) Current I(t) leads voltage V(t) by 180°.

Ans. 2

- **Sol.** Power = V_{rms} . $I_{rms} \cos \phi$ as $\cos \phi = 0$ (Because $\phi = 90$?)
 - \therefore Power consumed = 0 (in one complete cycle) SHED : 195
- 44. Match the corresponding entries of column-1 with coloumn-2 (Where m is the magnefication produced by the mirror) :-
 - Column-1Column-2(A) m = -2(a) Convex mirror $(B) m = -\frac{1}{2}$ (b) Concave mirror(C) m = +2(c) Real image $(D) m = +\frac{1}{2}$ (d) Virtual image
 - (1) $A \rightarrow b$ and c, $B \rightarrow b$ and c, $C \rightarrow b$ and d, $D \rightarrow a$ and d.
 - (2) A \rightarrow a and c, B \rightarrow a and d, C \rightarrow a and b, D \rightarrow c and d

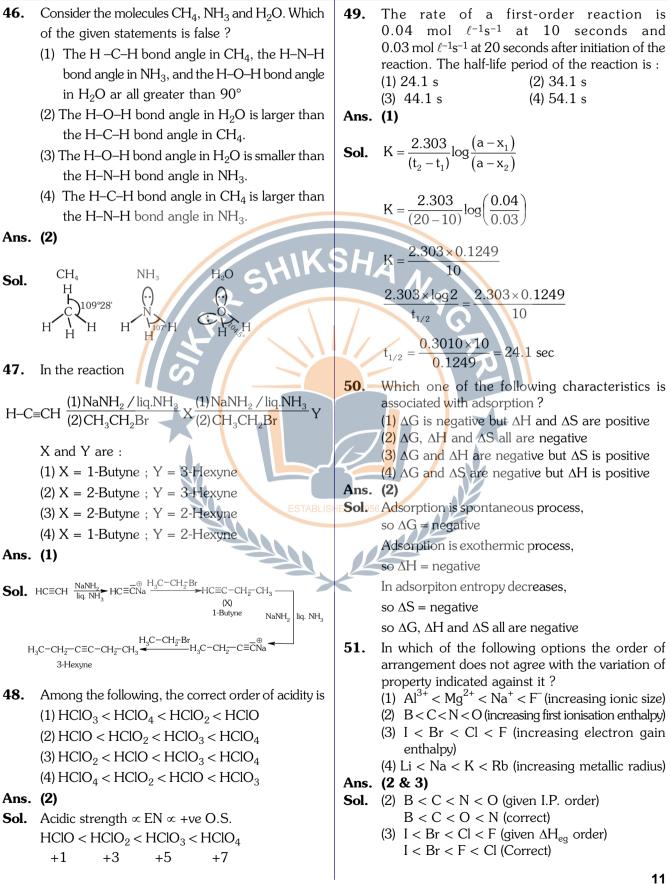
- (3) $A \rightarrow a$ and d, $B \rightarrow b$ and c, $C \rightarrow b$ and d, $D \rightarrow b$ and c
- (4) $A \rightarrow c$ and $d, B \rightarrow b$ and $d, C \rightarrow b$ and $c, D \rightarrow a$ and d

Ans. 1

- **Sol.** $m = +ve \Rightarrow virtual image$
 - $m = -ve \Rightarrow real image$
 - $|m| > 1 \Rightarrow$ magnified image
 - $|m| < 1 \Rightarrow$ diminished image
- **45.** A car is negotiating a curved road of radius R. The
 - road is banked at an angle θ . the coefficient of
 - friction between the tyres of the car and the road is μ_s . The maximum safe velocity on this road is :-
 - (1) $\sqrt{gR^2} \frac{\mu_s + \tan\theta}{1 \mu_s \tan\theta}$ (2) $\sqrt{gR \frac{\mu_s + \tan\theta}{1 - \mu_s \tan\theta}}$ ¹⁹⁵⁶(3) $\sqrt{\frac{g}{R} \frac{\mu_s + \tan\theta}{1 - \mu_s \tan\theta}}$

(4)
$$\sqrt{\frac{g}{R^2}} \frac{\mu_s + \tan\theta}{1 - \mu_s \tan\theta}$$

Ans. 2


Sol.
$$\frac{v^2}{Rg} = \left(\frac{\mu_s + \tan\theta}{1 - \mu_s \tan\theta}\right)$$

$$\Rightarrow v = \sqrt{Rg\left[\frac{\mu_{s} + \tan\theta}{1 - \mu_{s}\tan\theta}\right]}$$

CHEMISTRY

CODE-P

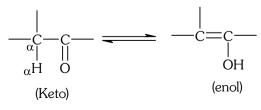
AIPMT / NEET-2016 TEST PAPER WITH ANSWER & SOLUTIONS (HELD ON SUNDAY 1st MAY, 2016)

- **52.** Which of the following statements is false ?
 - (1) Mg^{2+} ions form a complex with ATP
 - (2) Ca²⁺ ions are important in blood clotting
 - (3) Ca²⁺ ions are not important in maintaining the regular beating of the heart.
 - (4) Mg²⁺ ions are important in the green parts of plants.

Ans. (3)

Sol.

- **53.** Which of the following statements about hydrogen is **incorrect** ?
 - hydrogen has three isotopes of which tritium is the most common.
 - (2) Hydrogen never acts as cation in ionic salts
 - (3) Hydronium ion, H_3O^+ exists freely in solution
 - (4) Dihydrogen does not act as a reducing agent


Ans. (1 & 4)

Sol.

- 54. The correct statement regarding a carbonyl compound with a hydrogen atom on its alphacarbon, is :-
 - a carbonyl compound with a hydrogen atom on its alpha-carbon never equilibrates with its corresponding enol.
 - (2) a carbonyl compound with a hydrgen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehyde-ketone equilibration.
 - (3) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as carbonylation.
 - (4) a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism.

Ans. (4)

Sol. Keto-enol Tautomerism

- **55.** MY and NY₃, two nearly insoluble salts, have the same K_{sp} values of 6.2×10^{-13} at room temperature. Which statement would be **true** in regard to MY and NY₃?
 - (1) The molar solubilities of MY and NY_3 in water are identical.
 - (2) The molar solubility of MY in water is less than that of $\ensuremath{\mathrm{NY}_3}$
 - (3) The salts MY and NY_3 are more soluble in 0.5 M KY than in pure water.
 - (4) The addition of the salt of KY to solution of MY and NY_3 will have no effect on their solubilities.

Ans. (2)

Sol. MY
$$\rightarrow$$
 K_{sp} = s² = 6.2 × 10⁻¹³

$$s = \sqrt{6.2 \times 10^{-13}}$$

s = 7.87 × 10⁻⁷ mol L⁻¹
NY₃ \rightarrow K_{sp} = 27 s⁴ = 6.2 × 10⁻¹³

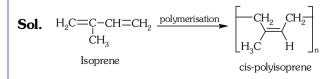
$$s = \left(\frac{6.2 \times 10^{-13}}{27}\right)^{1/4}$$

 $s = 3.89 \times 10^{-4} \text{ mol } L^{-1}$

:. molar solubility of NY₃ is more than MY in water.

56. In a protein molecule various amino acids are linked together by :

(1) α-glycosidic bond


(3) peptide bond(4) dative bond

Sol. Peptide bond

-C-NH-0

- 57. Natural rubber has
 - (1) All cis-configuration
 - (2) All trans-configuration
 - (3) Alternate cis-and trans-configuration
 - (4) Random cis-and trans-configuration

Ans. (1)

58. Match items of Column I with the items of Column II and asign the correct code :

	Column-I		Column-II
(a)	Cyanide process	(i)	Ultrapure Ge
(b)	Froth floatation process	(ii)	Dressing of ZnS
(c)	Electrolytic reduction	(iii)	Extraction of Al
(d)	Zone refining	(iv)	Extraction of Au
		(v)	Purification of Ni

(d)

(i)

(v)

(iv)

Code :

 (a)
 (b)
 (c)

 (1)
 (iv)
 (ii)
 (iii)

 (2)
 (ii)
 (iii)
 (i)

 (3)
 (i)
 (ii)
 (iii)

 (4)
 (iii)
 (iv)
 (v)

Ans. (1)

Sol.

- **59.** Which one of the following statements is correct when SO_2 is passed through acidified $K_2Cr_2O_7$ solution?
 - (1) The solution turns blue
 - (2) The solution is decolourized
 - (3) SO_2 is reduced
- (4) Green $Cr_2(SO_4)_3$ is formed Ans. (4)
- **Sol.** $K_2Cr_2O_7 + SO_2 + H_2SO_4$
 - $\rightarrow K_2 SO_4 + Cr_2 (SO_4)_3 + H_2 O$ green colour
- 60. The electronic configurations of Eu(Atomic No 63), Gd(Atomic No 64) and Tb (Atomic No. 65) are
 (1) [Xe]4f⁷6s², [Xe]4f⁸ 6s² and [Xe]4f⁸5d¹6s²
 (2) [Xe]4f⁷5d¹6s², [Xe]4f⁷5d¹6s² and [Xe]4f⁹6s²
 (3) [Xe]4f⁶5d¹6s², [Xe]4f⁷5d¹6s² and [Xe]4f⁸5d¹6s²
 (4) [Xe]4f⁷6s², [Xe]4f⁷5d¹6s² and [Xe]4f⁹6s²

Ans. (4)

Sol.

- **61.** Two electrons occupying the same orbital are distinguished by
 - (1) Principal quantum number
 - (2) Magnetic quantum number
 - (3) Azimuthal quantum number
 - (4) Spin quantum number

Ans. (4)

- **Sol.** Two electrons occupying the same orbital differ by spin quantum number.
- **62.** Which copper is heated with conc. HNO_3 it produces
 - (1) Cu(NO₃)₂ and NO₂
 - (2) Cu (NO₃)₂ and NO
 - (3) Cu(NO₃)₂, NO and NO₂
 - (4) Cu(NO₃)₂ and N₂O
- Ans. (1)
- **Sol.** $Cu + 4HNO_3$ (conc.) $\rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O_3$
- **63.** Which of the following reagents would distingusih cis-cyclopenta-1,2-diol from the trans-isomer?
 - (1) Acetone
 - (2) Ozone (3) MnO₂
 - (4) Aluminium isopropxide

Ans. (1)

Sol. $\Delta G = \Delta H - T.\Delta S$

For, $\Delta H < 0$ and $\Delta S > 0$, $\Delta G = -ve$ (always)

 \therefore spontaneous at all temperatures.

64. The correct thermodynamic conditions for the spontaneous reaction at all temperatures is

(1)
$$\Delta H < 0$$
 and $\Delta S = 0$

(2)
$$\Delta H > 0$$
 and $\Delta S < 0$

(3)
$$\Delta H < 0$$
 and $\Delta S > 0$

 $(4) \Delta H < 0$ and $\Delta S < 0$

Ans. (3)

Sol₅₆ $\Delta G = \Delta H - T \Delta S$ For, $\Delta H < 0$ and $\Delta S > 0$, $\Delta G = -ve$ (always)

... spontaneous at all temperatures.

- **65.** Lithium has a bcc structure. Its density is 530 kg m^{-3} and its atomic mass is 6.94 g mol^{-1} . Calculate the edge length of a unit cell of Lithium metal. (N_A = $6.02 \times 10^{23} \text{ mol}^{-1}$)
 - (1) 154 pm (2) 352 pm (3) 527 pm (4) 264 pm
- (3) 527 pm Ans. (2)

Sol. $\rho = \frac{Z \times M}{N_{\star} \times a^3}$

For bcc structure

$$Z = 2, \rho = 530 \text{ kg m}^{-3} = 0.530 \text{ g cm}^{-3}$$

$$0.530 = \frac{2 \times 6.94}{6.02 \times 10^{23} \times a^3}$$
$$a^3 = 4.348 \times 10^{-23} \text{ cm}^3$$
$$a = 3.52 \times 10^{-8} \text{ cm}$$
$$a = 352 \text{ pm}$$

66. Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules?

- (1) $I_2 > Br_2 > Cl_2 > F_2$
- (2) $Cl_2 > Br_2 > F_2 > I_2$ (3) $Br_2 > I_2 > F_2 > Cl_2$

(d)
$$F_2 > Cl_2 > Br_2 > l_2$$

(4) $F_2 > Cl_2 > Br_2 > l_2$

Ans. (2)

Sol. $C\ell_2 > Br_2 > F_2 > I_2$

 \downarrow

due to high ℓp - ℓp repulsion

- **67.** Which of the following is an analgesic ?
 - (1) Novalgin
 - (2) Penicillin
 - (3) Streptomycin
 - (4) Chloromycetin

Ans. (1)

- **Sol.** Novalgin used as analgesic
- **68.** Equal moles of hydrogen and oxygen gases are placed in a container with a pin-hole through which both can escape. What fraction of the oxygen escapes in the time required for one-half of the hydrogen to escape ?

(2) 1/4

(4) 1/2

- (1) 1/8
- (3) 3/8

Ans. (1)

Sol. $n_{H_2} = n_{O_2}$ and $t_{H_2} = t_{O_2}$

According to Graham's law

$$\frac{r_{H_2}}{r_{O_2}} = \sqrt{\frac{M_{O_2}}{M_{H_2}}} \Longrightarrow \frac{v_1 / t_1}{v_2 / t_2} = \sqrt{\frac{32}{2}}$$

 $\frac{1/2}{1/x} = \sqrt{16} = 4$

 $\frac{x}{2} = 4$

∴ x = 8

 \therefore Fraction of $O_2 = 1/8$

69. Consider the nitration of benzene using mixed conc. H₂SO₄ and HNO₃. If a large amount of KHSO₄ is added to the mixture, the rate of nitration will be:-(1) faster (2) slower
(3) unchanged (4) doubled

Ans. (2)

- **Sol.** Slower, as large amount of HSO_4^- will decrease ionisation of H_2SO_4 that result in lesser ionisation of nitric acid and lesser formation of nitronium ion $[NO_2^+]$
- **70.** Predict the correct order among the following :-
 - (1) lone pair- lone pair > lone pair bond pair> bond pair bond pair
 - (2) Ione pair Ione pair > bond pair bond pair > Ione pair - bond pair
 - (3) bond pair bond pair > lone pair bond pair> lone pair lone pair
 - (4) Ione pair bond pair > bond pair bond pair
 > Ione pair Ione pair

Ans. (1)

Sol.

AIKS

71. The product obtained as a result of a reaction of nitrogen with CaC₂ is :-

(4) Ca₂CN

(2) CaCN

- Ans. (Bonus) (Question should beBonous)
- **Sol.** $CaC_2 + N_2 \rightarrow CaCN_2 + C$
- 72. Consider the following liquid vapour equilibrium.

Which of the following relations is correct?

(1)
$$\frac{d\ell n G}{dT^2} = \frac{\Delta H_v}{RT^2}$$

(2)
$$\frac{d\ell n P}{dT} = \frac{-\Delta H_v}{RT}$$

$$(3) \quad \frac{d\ell n P}{dT^2} = \frac{-\Delta H_v}{T^2}$$

$$(4) \ \frac{d\ell nP}{dT} = \frac{\Delta H_v}{RT^2}$$

Ans. (4)

Sol. Clausius - Clapeyron's equation

$$\frac{d\ln P}{dT} = \frac{\Delta H_V}{RT^2}$$

73.	hybridi the co	-	shape g	iven in column I w iven in column II an mn-II		of H ₂ -electrode zero in pure water at 298 K is (1) 10 ⁻¹⁴ atm (2) 10 ⁻¹² atm				of H ₂ -electrode zero in pure water (1) 10 ⁻¹⁴ atm (2) 10 ⁻¹² atm	(2) 10^{-12} atm
		1		<u>г</u>			(3) 10 ⁻¹⁰ atm				
	(a)	XeF ₆	(i)	Distorted octahedral		Ans.	(4) 10 ⁻⁴ atm (1)				
	(b)	XeO ₃	(ii)	Square planar		Sol.	$2H^+(aq) + 2e^- \rightarrow H_2(g)$				
	(c)	$XeOF_4$	(iii)	pyramidal			$\therefore E = E^{0} - \frac{0.0591}{2} \log \frac{P_{H_{2}}}{[H^{+}]^{2}}$				
	(d)	XeF_4	(iv)	Square pyramidal			$2 [H^+]^2$				
	Code	:-	•				P_{H_2}				
	(a)) (b)		(c) (d)			$0 = 0 - 0.0295 \log \frac{P_{H_2}}{(10^{-7})^2}$				
	(1) (i)	(iii)		(iv) (ii)		21					
	(2) (i)	(ii)		(iv) (iii)		חפ	P _H				
	(3) (iv)			(i) (ii) (iii)			$\frac{1}{(10^{-7})^2} = 1$				
Ans.) (i)		(ii) (iii)							
Sol.	XeF	6	Xe	203		//	$P_{H_2} = 10^{-14} \text{ atm}$				
	F FN L		(¢	$\overline{\bullet}$		76.	The addition of a catalyst during a chemical reaction				
		F		ke o			alters which of the following quantities ?				
	F	`F					(1) Entropy				
	disto octah		Pyra	amidal			(2) Internal energy				
	XeO)E	5	CoF .		4	(3) Enthalpy				
	Q	JI 4	1				(1) Activistical comput				
	F\	/F	F	(*) /F 'Xe	ESTABLISI		(4)				
	F (·)	F	F	(·) F			The addition of catalyst during a chemical reaction				
	Squ pyran			quare blanar			alters the activation energy.				
			*			77.	The ionic radii of A^+ and B^- ions are				
74.			-	longest C-O bond	length?		$0.98 \times 10^{-10} \text{m}$ and $1.81 \times 10^{-10} \text{ m}.$ The				
	(Free (1) Ni		length 1	n Co is 1.128Å).			coordination number of each ion in AB is :-				
		(CO) ₄ (CO) ₄] ⁰					(1) 6 (2) 4				
		e(CO) ₄] ^{2–}					(3) 8 (4) 2				
		n(CO) ₆]+				Ans.	(1)				
Ans.	• •	N 19									
Sol.	[Fe(CC Since		is carr	ving maximum —ve	charge	Sol.	radii ratio = $\frac{r_{+}}{r_{-}} = \frac{0.98 \times 10^{-10}}{1.81 \times 10^{-10}} = 0.54$				
			•	naximum synergic b	-		1_ 1.01 ^ 10				
				bond length wo	-		radii ratio is in between 0.414 to 0.732				
	maxim						so, coordination number is 6				

- **78.** Which is the **correct** statement for the given acids?
 - Phosphinic acid is a diprotic acid while phosphonic acid is a monoprotic acid
 - (2) Phosphinic acid is a monoprotic acid while phosphonic acid is a diprotic acid
 - (3) Both are triprotic acids
 - (4) Both are diprotic acids

Ans. (2)

Sol. Phosphinic acid (H_3PO_2)

 $H \xrightarrow{I} P \xrightarrow{O} OH$ Phosphonic acid (H₃PO₃)

$$P \longrightarrow Diprotic acidOH OH$$

- **79.** Fog is colloidal solution of :-
 - (1) Liquid in gas
 - (2) Gas in liquid
 - (3) Solid in gas
 - (4) Gas in gas

Ans. (1)

Н

- Sol. Fog is a colloidal solution of liquid in gas
- 80. Which of the following statement about thes composition of the vapour over an ideal a 1 : 1 molar mixture of benzene and toluene is correct? Assume that the temperature is constant at 25°C. (Given : Vapour Pressure Data at 25°C, benzene = 12.8 kPa, Toluene = 3.85 kPa)
 - (1) The vapour will contain a higher percentage of benzene
 - (2) The vapour will contain a higher percentage of toluene
 - (3) The vapour will contain equal amounts of benezene and toluene
 - (4) Not enough information is given to make a predication

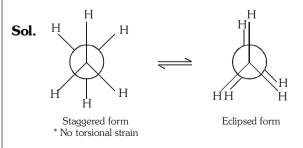
Ans. (1)

- **Sol.** $A \rightarrow$ benzene, $B \rightarrow$ toluene
 - 1:1 molar mixture of A and B

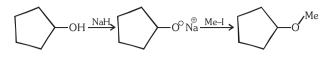
$$\therefore$$
 $x_A = \frac{1}{2}$ and $x_B = \frac{1}{2}$

$$P_{\rm s} = P_{\rm A}^0 X_{\rm A} + P_{\rm B}^0 X_{\rm B}$$

$$P_{s} = 12.8 \times \frac{1}{2} + 3.85 \times \frac{1}{2} = 8.325 \text{kPa}$$


$$Y_{A} = \frac{P_{A}^{0}X_{A}}{P_{s}} = \frac{12.8 \times \frac{1}{2}}{8.325} = 0.768$$

$$Y_{\rm B} = 1 - Y_{\rm A} = 1 - 0.768 = 0.232$$


so, the vapour will contain higher percentage of benzene.

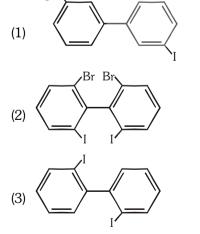
- **81.** The **correct** statement regarding the comparison of staggered and eclipsed conformation of ethane, is :-
 - The staggered conformation of ethane is less stable than eclipsed conformation, because staggered conformation has torsional strain
 - (2) The eclipsed conformation of ethane is more stable than staggered conformation, because eclipsed conformation has no torsional strain
 - (3) The eclipsed conformation of ethane is more stable than staggered conformation even through the eclipsed conformation has torsional strain
 - (4) The staggered conformation of ethane is more stable than eclipsed conformation, because staggered conformation has no torsional strain.

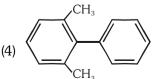
Ans. (4)

82. The reaction

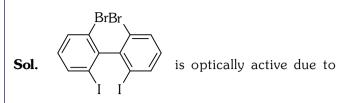
Can be classified as :-

- (1) Williamson ether synthesis reaction
- (2) Alcohol formation reaction
- (3) Dehydration reaction
- (4) Williamson alcohol synthesis reaction


Ans. (1)


- **Sol.** This is an exmaple of Williamson ether syntehsis reaction in which sodium alkoxide reacts with alkyl halide and gives ether.
- **83.** The product formed by the reaction of an aldehyde with a primary amine is :-
 - (1) Schiff base
 - (2) Ketone
 - (3) Carboxylic acid

 $C=O + R' - NH_2$


- (4) Aromatic acid
- Ans. (1)
- Sol.
- Aldehyde + primary amine Schiff base
- 84. Which of the following biphenuls is optically active?

Η

Ans. (2)

absence of plane of symmetry and center of symmetry

85. For the following reactions :-(a) $CH_3CH_2CH_2Br + KOH \rightarrow CH_3CH=CH_2+KBr + H_2O$

(b)
$$H_3C$$
 CH_3 H_3C CH_3 $+KOH$ \rightarrow OH $+KBr$

Which of the following statements is **correct** ?

- (1) (a) and (b) are elimination reaction and (c) is addition reaction
- (2) (a) is elimination, (b) is substitution and (c) is addition reaction
- (3) (a) is elimination, (b) and (c) are substitution reactions
- HED : 1956 (4) (a) is substitution, (b) and (c) are addition reaction Ans. (2)

Sol.

SH,

(a) $CH_3CH_2CH_2$ -Br+KOH \rightarrow $CH_3CH=CH_2$ +KBr + H_2O breaking of 2σ bonds and formation of 1π bond so it is an example of elimination reaction.

(b)
$$\stackrel{H_3C}{\underset{Br}{\sim}} C \stackrel{CH_3}{\underset{OH}{\leftarrow}} + KOH \longrightarrow \stackrel{H_3C}{\underset{OH}{\leftarrow}} C \stackrel{CH_3}{\underset{OH}{\leftarrow}} + KBr$$

replacement of Br- by OH- is substitution reaction

(c) $(\mathbf{r} + \mathbf{Br}_2 \longrightarrow \mathbf{Fr}_B$

breaking of 1π bond and formation of 2σ bonds is addition reaction

- At 100°C the vapour pressure of a solution of 6.5g 86. of a solute in 100 g water is 732 mm. If $K_{\rm b} = 0.52$, the boiling point of this solution will be :-
 - (1) 101℃ (2) 100°C
 - (3) 102°C (4) 103℃

- **Sol.** $\left(\frac{P^{\circ} P_{s}}{P^{\circ}}\right) = \frac{n}{N} = \frac{W_{solute}}{M} \times \frac{M_{solvent}}{W}$
 - at 100 °C, P⁰ = 760 mm

$$\frac{760-732}{760} = \frac{6.5 \times 18}{M_{solute} \times 100}$$

 $M_{solute} = 31.75 \text{ g mol}^{-1}$

$$\Delta T_{b} = m \times K_{b} = \frac{W_{solute} \times 1000}{M_{solute} \times W_{solvent}}$$

$$\Delta T_{\rm b} = \frac{0.52 \times 6.5 \times 1000}{31.75 \times 100} = 1.06^{\circ}$$

: boiling point of solution

- $= 100^{\circ}C + 1.06^{\circ}C \approx 101^{\circ}C$
- The correct statement regarding RNA and DNA, 87. respectively is :
 - (1) The sugar component in RNA is arabinose and the sugar component in DNA is 2'-deoxyribose.
 - (2) The sugar component in RNA is ribose and the sugar component in DNA is 2'-deoxyribose.
 - (3) The sugar component in RNA is arabinose
 - (4) The sugar component in RNA is 2'-deoxyribose and the sugar component in DNA is arabinose.
- Ans. (2)
- **Sol.** RNA → Ribose Nucleic Acid
 - DNA ___ 2'-Deoxyribose Nucleic Acid

- 88. The **correct** statement regarding the basicity of arvlamines is :-
 - (1) Arylamines are generally less basic than alkylamines because the nitrogen lone-pair electrons are delocalized by interaction with the aromatic ring π electron system.
 - (2) Arylamines are generally more basic than alkylamines because the nitrogen lone-pair electrons are not delocalized by interaction with the aromatic ring π electron system.
 - (3) Arylamines are generally more basic than alkylamines because of aryl group.
 - (4) Arylamines are generally more basic than alkylamines, because the nitrongen atom in arylamines is sp-hybridized.
- ŇΗ. Sol. alkyl amine Aryl amine * Delocalized lone pair of nitrogen * less basic 89. Which one given below is a non-reducing sugar? (1) Maltose (2) Lactose (3) Glucose (4) Sucrose Ans.56 (4) R-NH, Sol. alkyl amine Aryl amine * Delocalized lone pair of nitrogen * less basic 90. The pair of electron in the given carbanion, $CH_{3}C \equiv C^{\Theta}$, is present in which of the following orbitals ? (1) 2p (2) sp^3 (3) sp^2 (4) sp Ans. (4) **Sol.** $CH_3 - C \equiv C^{\Theta}$ No. of σ bp-1 2 & hybridisation is sp

Ans. (1)

CODE-P

AIPMT / NEET-2016 TEST PAPER WITH ANSWER & SOLUTIONS (HELD ON SUNDAY 01st MAY, 2016)

91.	Gause's principle of competitive exclusion states	96.	Which of the following most appropriately describes
	that :		haemophilia?
	(1) More abundant species will exclude the less abundant species through competition.		(1) Recessive gene disorder
	(2) Competition for the same resources excludes		(2) X - linked recessive gene disorder
	species having different food preferences.		(3) Chromosomal disorder
	(3) No two species can occupy the same niche		(4) Dominant gene disorder
	indefinitely for the same limiting resources.	Ans.	
	(4) Larger organisms exclude smaller ones through competition.	97.	Emerson's enhancement effect and Red drop have been instrumental in the discovery of :-
Ans.			(1) Photophosphorylation and non-cyclic electron
			transport
92.	The two polypeptides of human insulin are linked together by :-	SH	(2) Two photosystems operating simultaneously
	(1) Hydrogen bonds		(3) Photophosphorylation and cyclic electron
	(2) Phosphodiester bond		transport
	(3) Covalent bond		(4) Oxidative phosphorylation
	(4) Disulphide bridges	Ans.	
A		98.	In which of the following, all three are
Ans. 93.			macronutrients?
93.	The coconut water from tender coconut represents:-		(1) Boron, zinc, manganese
	(1) Endocarp		(2) Iron, copper, molybdenum
	(2) Fleshy mesocarp	4	(3) Molybdenum, magnesium, manganese
	(3) Free nuclear proembryo		(4) Nitrogen, nickel, phosphorus
A	(4) Free nuclear endosperm	Ans.	
Ans.		99.	Name the chronic respiratory disorder caused
94.	Which of the following statements is wrong for viroids?		mainly by cigarette smoking :-
	(1) They lack a protein coat		-(1) Emphysema (2) Asthma
	(2) They are smaller than viruses		
	(3) They cause infections		(3) Respiratory acidosis
	(4) Their RNA is of high molecular weight	Ans.	(4) Respiratory alkalosis
Ans.			A system of rotating crops with legume or grass
95.	Which of the following featrues is not present in the	100.	pasture to improve soil structure and fertility is
	Phylum - Arthropoda ?		called:-
	(1) Chitinous exoskeleton		(1) Ley farming
	(2) Metameric segmentation		(2) Contour farming
	(3) Parapodia		(3) Strip farming
	(4) Jointed appendages		(4) Shifting agriculture
Ans.	(3)	Ans.	(1)

101.	Mitochondria and chloroplast are :-	107.	Which of the following is required as inducer(s) for
	(a) semi-autonomous organelles		the expression of Lac operon ?
	(b) formed by division of pre-existing organelles and		(1) Glucose
	they contain DNA but lack protein synthesizing		(2) Galactose
	machinery		(3) Lactose
	Which one of the following options is correct ?		(4) Lactose and galactose
	(1) Both (a) and (b) are correct	Ans.	-
	(2) (b) is true but (a) is false	108.	Which of the following pairs of hormones are not
	(3) (a) is true but (b) is false		antagonistic (having opposite effects) to each other?
	(4) Both (a) and (b) are false		(1) Parathormone – Calcitonin
A			(2) Insulin – Glucagon
Ans.			(3) Aldosterone – Atrial Natriuretic Factor
102.	In context of Amniocentesis, which of the following		(4) Relaxin – Inhibin
	statement is incorrect ?	Ans.	
	(1) It is usually done when a woman is between		Microtubules are the constituents of :-
	14-16 weeks pregnant.	1021	(1) Cilia, Flagella and Peroxisomes
	(2) It is used for prenatal sex determination	SH	(2) Spindle fibres, Centrioles and Cilia
	(3) It can be used for detection of Down syndrome		(3) Centrioles, Spindle fibres and Chromatin
	(4) It can be used for detection of Cleft palate		(4) Centrosome, Nucleosome and Centrioles
Ans.	(4)	Ans.	
103.	In a chloroplast the highest number of protons are		A complex of ribosomes attached to a single strand
	found in :-	17.	of RNA is known as :-
	(1) Stroma		(1) Polysome (2) Polymer
	(2) Lumen of thylakoids		(3) Polypeptide (4) Okazaki fragment
	(3) Inter membrane space	Ans.	
	(4) Antennae complex		Fertilization in humans is practically feasible only if:-
Ans.	(2)		(1) the sperms are transported into vagina just after
104.	Photosensitive compound in human eye is made up		the release of ovum in fallopian tube
	of :-		(2) the ovum and sperms are transported
	(1) Guanosine and Retinol	HED : 195	
	(2) Opsin and Retinal		the fallopian tube
	(3) Opsin and Retinol		(3) the ovum and sperms are transported
	(4) Transducin and Retinene		simultaneously to ampullary - isthmic junction
Ans.			of the cervix
	Spindle fibres attach on to :-		(4) the sperms are transported into cervix within
	(1) Telomere of the chromosome		48 hrs of release of ovum in uterus
	(2) Kinetochore of the chromosome	Ans.	
	(3) Centromere of the chromosome		Asthma may be attributed to :
	(4) Kinetosome of the chromosome		(1) bacterial infection of the lungs
Ans.			(2) allergic reaction of the mast cells in the lungs
			(3) inflammation of the trachea
100.	Which is the National Aquatic Animal of India ?		(4) accumulation of fluid in the lungs
	(1) Gangetic shark	Ans.	
	(2) River dolphin		The <i>Avena</i> curvature is used for bioassay of :
	(3) Blue whale	0.	(1) ABA (2) GA_3
	(4) Sea-horse		(3) IAA (4) Ethylene
Ans.	(2)	Ans.	
			\-/
			12

114.	also called : (1) Carina	papilionaceous corolla is (2) Pappus	121.	Which of the following is a characteristic feature of cropland ecosystem ? (1) Absence of soil organisms
	(3) Vexillum	(4) Corona		(2) Least genetic diversity
Ans.	• •	•••••••••••••••••••••••••••••••••••••••		(3) Absence of weeds
115.	flowers of :	s gynoecium is found in		(4) Ecological succession
	(1) Liliaceae	(2) Solanaceae		
	(3) Fabaceae	(4) Poaceae	Ans.	
Ans.	. ,		122.	Changes in GnRH pulse frequency in females is
		onents of cell wall of most		controlled by circulating levels of :-
	fungi is :-			(1) estrogen and progesterone
	(1) Chitin	(2) Peptidoglycan		(2) estrogen and inhibin
	(3) Cellulose	(4) Hemicellulose		(3) progesterone only
Ans.	(1)			(4) progesterone and inhibin
117.	Select the incorrect state			
		ertoli cells which help in	Ans.	
	spermiogenesis	5	123.	Which of the following is not a feature of the
	(2) LH triggers ovulation	ase gradually during the	1	plasmids?
	follicular phase	use gradually during the		(1) Independent replication
	-	n of androgens from the		(2) Circular structure
	Leydig cells		-	(3) Transferable
Ans.				(4) Single - stranded
	In meiosis crossing over	is initiated at :	Ans.	
	(1) Pachytene	(2) Le <mark>p</mark> toten e		
	(3) Zygotene	(4) Dip <mark>l</mark> otene	124.	Which of the following features is not present in <i>Periplaneta americana</i> ?
Ans.				
119.		n pea plant is crossed with	HED · 105	(1) Schizocoelom as body cavity
		den pea plant. When the	ILD . 190	(2) Indeterminate and radial cleavage during
		resulting genotypes were		embryonic development
	in the ratio of : $(1) 1 \cdot 2 \cdot 1 \cdots$ Tall homor	ygous : Tall heterozygous		(3) Exoskeleton composed of N-acetylglucosamine
		: Dwarf		(4) Metamerically segmented body
	(2) 1 : 2 : 1 :: Tall heteroz	zygous : Tall homozygous	Ans.	(2)
	(_,	: Dwarf		In higher vertebrates, the immune system can
	(3) 3 : 1 :: Tall : Dwarf			distinguish self-cells and non-self. If this property is
	(4) 3 : 1 :: Dwarf : Tall			lost due to genetic abnormality and it attacks self-
Ans.	(1)			cells, then it leads to :-
120.	Which of the following is	the most important cause		(1) Allergic response
		ing driven to extinction ?		(2) Graft rejection
	(1) Over - exploitation			•
	(2) Alien species invasion			(3) Auto-immune disease
	(3) Habitat loss and fragr(4) Co-extinctions	nentation		(4) Active immunity
Ans.			Ans.	(3)
/ 113.				

- **126.** Match the terms in Column-I with their description in Column-II and choose the correct option :
- (1) Anther (2) Connective (3) Placenta (4) Thalamus or petal Column-I Column-II Ans. (4) 131. Which of the following approaches does not give Many genes govern a (a) Dominance (i) single character the defined action of contraceptive ? In a heterozygous (1)Barrier prevent fertilization (b)Codominance (ii) organism only one methods allele expresses itself (2) Intra uterine Increase phagocytosis of In a heterozygous devices sperms, suppress sperm organism both alleles (iii) motility and fertilizing (c) Pleiotropy express themselves capacity of sperms fully Hormonal (3)Prevent/retard entry of A single gene contraceptives sperms, prevent ovulation Polygenic (d) (iv) influences many and fertilization inheritance characters (4)Vasectomy Prevents spermatogenesis (c) (a) (b) (d)Ans. (4) (1) (ii) (i) (iv)(iii) **132.** The tag polymerase enzyme is obtained from : (i) (2) (ii) (iii) (iv) (1) Thermus aquaticus (iii) (3) (iv) (i) (ii) (2) Thiobacillus ferroxidans (4) (iv) (iii) (ii) (3) Bacillus subtilis Ans. (2) (4) Pseudomonas putida **127.** Joint Forest Management Concept was introduced Ans. (1) in India during : (4) 1990 s 133. Identify the correct statement on 'inhibin' :-(1) 1960 s (2) 1970 s (3) 1980 s (1) Inhibits the secretion of LH, FSH and Prolactin. Ans. (3) (2) Is produced by granulose cells in ovary and inhibits 128. Pick out the correct statements : the secretion of FSH. (a) Haemophilia is a sex-linked recessive disease (3) Is produced by granulose cells in ovary and inhibits (b) Down's syndrome is due to aneuploidy the secretion of LH. (c) Phenylketonuria is an autosomal recessive gene (4) Is produced by nurse cells in testes and inhibits disorder. the secretion of LH. (d) Sickle cell anaemia is a X-linked recessive gene Ans. (2) disorder **134.** Which part of the tobacco plant is infected by (1) (a) and (d) are correct Meloidogyne incognita? (2) (b) and (d) are correct (1) Flower (2) Leaf (3) Stem (4) Root (3) (a), (c) and (d) are correct Ans. (4) (4) (a), (b) and (c) are correct **135.** Antivenom injection contains preformed antibodies Ans. (4) while polio drops that are administered into the body **129.** Which one of the following statements is wrong? contain :-(1) Cyanobacteria are also called blue-green algae (1) Activated pathogens (2) Golden algae are also called desmids (2) Harvested antibodies (3) Eubacteria are also called false bacteria (3) Gamma globulin (4) Phycomycetes are also called algal fungi (4) Attenuated pathogens Ans. (3) Ans. (4)

130. Proximal end of the filament of stamen is attached

to the

136.	Which one of the following c	ell organelles is enclosed	143.	A pl	ant in your garden ave	oids photorespiratory
	by a single membrane ?			losse	es, has improved water us	e efficiency shows high
	(1) Mitochondria	2) Chloroplasts		rates	s of photosynthesis at h	igh temperatures and
	(3) Lysosomes (4	1) Nuclei		has i	improved efficiency of r	nitrogen utilisation. In
Ans.	(3)			whic	h of the following physi	ological groups would
137.	Lack of relaxation betwee	n successive stimuli in			assign this plant ?	0 0 1
	sustained muscle contraction	on is known as :-		(1) C) C ₄
		2) Fatigue		(3) C	0) Nitrogen fixer
		1) Tonus	Ans.			, i uli ogen ilker
Ans.	· /			• •	ab of the following struc	turas is homologus to
138.	Which of the following is n	ot a stem modification?	144.		ch of the following struc	stures is noniologus to
	(1) Pitcher of <i>Nepenthes</i>				wing of a bird ?	
	(2) Thorns of citrus			. ,	Dorsal fin of a Shark	
	(3) Tendrils of cucumber				Ving of a Moth	
	(4) Flattened structures of	Opuntia		. ,	lind limb of Rabbit	
Ans.	(1)				lipper of Whale	
139.	Water soluble pigments four	nd in plant cell vacuoles	Ans.	• •		
	are :-	- UK	145.		ch of the following charac	-
	(1) Xanthophylls	2) Chlorophylls		hold	s true for the correspond	ling group of animals?
		1) Anthocyanins				
Ans.				(1)	Cartilaginous	Chondrichthyes
	Select the correct stateme	ent :-			endoskeleton	
	(1) Gymnosperms are bo			(2)	Viviparous	Mammalia
	heterosporous			-		
	(2) Salvinia, Ginkgo and Pin	usall are gumnosperms		(3)	Possess a mouth with an upper and a lower	Chordata
	(3) <i>Sequoia</i> is one of the ta				jaw	
	(4) The leaves of gymnosper			7		
	to extremes of climate			(4)	3 - chambered heart	Reptilia
Ans.			7		with one incompletely divided ventricle	
	Which of the following is no	t required for any of the			uivided verificie	
141.	techniques of DNA finge	ESTABLIS	Ans.			
	• •	iphining available at	146.	Whi	ch of the following state	ements is not true for
	present ?				er cells in relation to m	
	(1) Polymerase chain reaction			(1)]	Mutations in proto-oncog	enes accelerate the cell
	(2) Zinc finger analysis				cycle.	
	(3) Restriction enzymes				Mutations destroy telom	erase inhibitor.
	(4) DNA–DNA hybridization	1			Mutations inactive the c	
Ans.				. ,	Mutations inhibit produc	
142.	Which type of tissue corr	ectly matches with its	Ans.		ratations minor produc	chorr of telomeruse.
	location ?	_		• •	amino acid Tryptophan i	is the precursor for the
	Tissue	Location	147.		hesis of :-	is the precuisor for the
	(1) Smooth muscle	Wall of intestine		2	Melatonin and Serotonii	2
	(2) Areolar tissue	Tendons				
	(3) Transitional epithelium	Tip nose			Thyroxine and Triiodoth	
	(4) Cuboidal epithelium	Lining of stomach			Estrogen and Progester	שווכ
Ans.	(1)		•		Cortisol and Cortisone	
			Ans.	(1)		

Ans.		Ans.	 Which one of the following statements is not true? (1) Tapetum helps in the dehiscence of anther (2) Exine of pollen grains is made up of sporopollenin (3) Pollen grains of many species cause severe
149.	Reduction in pH of blood will :-		allergies
	(1) reduce the rate of heart beat.		(4) Stored pollen in liquid nitrogen can be used in
	(2) reduce the blood supply to the brain.(3) decrease the affinity of hemoglobin with oxygen.	Ans.	the crop breeding programmes
	(4) release bicarbonate ions by the liver.		Which of the following would appear as the pioneer
Ans.		107.	organisms on bare rocks?
	Analogous structures are a result of :-		(1) Lichens (2) Liverworts
	(1) Divergent evolution		(3) Mosses (4) Green algae
	(2) Convergent evolution	Ans.	
	(3) Shared ancestry	158.	Which one of the following is the starter codon ?
	(4) Stabilizing selection		(1) AUG (2) UGA
Ans.	(2)		7(<mark>3)</mark> UAA (4) UAG
151.	Which of the following is a restriction endonuclease?	Ans.	(1)
	(1) Hind II (2) Protease	1 <mark>59</mark> .	Which one of the following characteristics is not
	(3) DNase I (4) RNase		shared by birds and mammals ?
Ans.	(1) ESTABLIS	HED : 195	(1) Ossined endoskeleton
152.	The term ecosystem was coined by		(2) Breathing using lungs
	(1) E.P. Odum (2) A.G. Tansley		(3) Viviparity
	(3) E. Haeckel (4) E. Warming		(4) Warm blooded nature
Ans.		Ans.	
153.	Which one of the following statements is wrong ?	160.	Nomenclature is governed by certain universal
	 Sucrose is a disaccharide. Collulação a polyacetharida 		rules. Which one of the following is contrary to the rules of nomenclature?
	(2) Cellulose is a polysaccharide.(3) Uracil is a pyrimidine.		(1) Biological names can be written in any language
	(4) Glycine is a sulphur containing amino acid.		(1) Diological names can be written in any language(2) The first word in a biological name represents
Ans.			the genus name, and the second is a specific
	In bryophytes and pteridophytes, transport of male		epithet
-01.	gametes requires :-		(3) The names are written in Latin and are italicised
	(1) Wind (2) Insects		(4) When written by hand, the names are to be
	(3) Birds (4) Water		underlined
Ans.		Ans.	(1)

161.	Blood pressure in the pulmonary artery is :-	1
	(1) same as that in the aorta.	
	(2) more than that in the carotid.	
	(3) more than that in the pulmonary vein.	
	(4) less than that in the venae cavae.	A
Ans.		1
		1
102.	Cotyledon of maize grain is called :-	
	(1) plumule (2) coleorhiza	
	(3) coleoptile (4) scutellum	
Ans.	(4)	
163.	In the stomach, gastric acid is secreted by the :-	
	(1) gastrin secreting cells	
	(2) parietal cells	
	(3) peptic cells	
	(4) acidic cells	
Ans.	(2)	
164.	Depletion of which gas in the atmosphere can lead	5
	to an increased incidence of skin cancers :-	
	(1) Nitrous oxide (2) Ozone	
	(3) Ammonia (4) Methane	
Ans.		
	Chrysophytes, Euglenoids, Dinoflagellates and Slime	A
100.	moulds are included in the kingdom :-	1
	(1) Monera (2) Protista	
	(3) Fungi (4) Animalia	
Ans.		
	Water vapour comes out from the plant leaf	
100.	through the stomatal opening. Through the same	4
	stomatal opening carbon dioxide diffuses into the	
	plant during photosynthesis. Reason out the above SI	HED
	statements using one of following options :-	
	(1) Both processes cannot happen simultaneously.	A
	(2) Both processes can happen together because	
	the diffusion coefficient of water and CO_2 is	
	different.	
	(3) The above processes happen only during night	
	time.	
	(4) One process occurs during day time, and the	
	other at night.	
Ans.	(2)	A
167.	In mammals, which blood vessel would normally	1
	carry largest amount of urea ?	-
	(1) Renal Vein (2) Dorsal Aorta	
	(3) Hepatic Vein (4) Hepatic Portal Vein	
Ans.	(3)	

168. Seed formation without fertilization in flowering plants involves the process of :(1) Sporulation (2) Budding

(3) Somatic hybridization (4) Apomixis

Ans. (4)

^{169.} Which of the following is wrongly matched in the given table ?

	Microbe	Product	Application
(1)	Trichoderma polysporum	Cyclosporin A	immunosup- pressive drug
(2)	Monascus purpureus	Statins	lowering of blood cholesterol
(3)	Streptococcus	Streptokin ase	removal of clot from blood vessel
(4)	Clostridium butylicum	Lip <mark>a</mark> se	removal of oil stains

Ans. (4)

170. In a testcross involving F₁ dihybrid flies, more parental-type offspring were produced than the recombinant-type offspring. This indicates :-

- (1) The two genes are located on two different chromosomes.
- (2) Chromosomes failed to separate during meiosis.
- (3) The two genes are linked and present on the same chromosome.
- (4) Both of the characters are controlled by more than one gene.

Ans. (3)

- **171.** It is much easier for a small animal to run uphill than for a large animal, because :-
 - (1) It is easier to carry a small body weight.
 - (2) Smaller animals have a higher metabolic rate.
 - (3) Small animals have a lower O_2 requirement.
 - (4) The efficiency of muscles in large animals is less than in the small animals.

Ans. (2)

- **172.** Which of the following is **not** a characteristic feature during mitosis in somatic cells ?
 - (1) Spindle fibres
 - (2) Disappearance of nucleolus
 - (3) Chromosome movement
 - (4) Synapsis

Ans. (4)

- 173. Which of the following statements is not correct?
 - Pollen grains of many species can germinate on the stigma of a flower, but only one pollen tube of the same species grows into the style.
 - (2) Insects that consume pollen or nectar without bringing about pollination are called pollen/nectar robbers.
 - (3) Pollen germination and pollen tube growth are regulated by chemical components of pollen interacting with those of the pistil.
 - (4) Some reptiles have also been reported as pollinators in some plant species.

Ans. (1)

- **174.** Specialised epidermal cells surrounding the guard cells are called :-
 - (1) Complementary cells
 - (2) Subsidiary cells
 - (3) Bulliform cells
 - (4) Lenticels

Ans. (2)

- **175.** Which of the following guards the opening of hepatopancreatic duct into the duodenum?
 - (1) Semilunar valve (2) Ileocaecal valve

(3) Pyloric sphincter (4) Sphincter of Oddi

Ans. (4)

- 176. Stems modified into flat green organs performing the functions of leaves are known as :(1) Cladodes
 (2) Phyllodes
 (3) Phylloclades
 (4) Scales
- Ans. (3)

- **177.** The primitive prokaryotes responsible for the production of biogas from the dung of ruminant animals, include the :-
 - (1) Halophiles (2) Thermoacidiophiles
 - (3) Methanogens (4) Eubacteria

Ans. (3)

- **178.** A river with an inflow of domestic sewage rich in organic waste may result in :-
 - (1) Drying of the river very soon due to algal bloom.
 - (2) Increased population of aquatic food web organisms.
 - (3) An increased production of fish due to biodegradable nutrients.
 - (4) Death of fish due to lack of oxygen.

Ans. (4)

- **179.** A cell at telophase stage is observed by a student in a plant brought from the field. He tells his teacher that this cell is not like other cells at telophase stage. There is no formation of cell plate and thus the cell is containing more number of chromosomes as compared to other dividing cells. This would result in :-
 - (1) Aneuploidy (2) Polyploidy
 - (3) Somaclonal variation (4) Polyteny

Ans. (2)

- 180. A typical fat molecule is made up of :-
 - (1) Three glycerol molecules and one fatty acid molecule
 - (2) One glycerol and three fatty acid molecules
 - (3) One glycerol and one fatty acid molecule
- (4) Three glycerol and three fatty acid molecules Ans. (2)